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Evaluation of R-curve effects in ceramics

T. FETT, D. MUNZ
Kernforschungszentrum Karlsruhe, Institut fir Materialforschung I, and Institut fir

Zuverlassigkeit und Schadenskunde im Maschinenbau, Universitat Karlsruhe, Postfach 3640,
W 7500 Karlsruhe, Germany

In coarse-grained alumina the crack growth resistance increases with increasing crack extension
due to crack-border interactions. The crack shielding stress intensity factor can be calculated
from the relation between the bridging stresses and the crack opening displacement. The
parameters of this relation can be obtained from experimental results on stable or subcritical
crack extension. Finally the effect of the R-curve on the behaviour of components with small

cracks is discussed.

1. Introduction

Coarse-grained Al,O; shows an R-curve behaviour
which is characterized by an increase in crack growth
resistance with increasing crack extension [1-10]. Tt
was demonstrated experimentally [2, 3] that this effect
is caused by crack-border interactions in the wake of
the advancing crack. Recently, the crack—surface inter-
actions have been detected in situ under the electron
microscope [11, 12]. The bridging interactions were
observed mainly on large grains.

Crack shielding by crack—border interaction is not
only effective in a test involving increasing load. Also
under constant load with subcritical crack growth the
crack—border interaction affects the observed crack
growth rate. The stress intensity factor acting at the
crack tip, Ky, can be written as

Kltip Klappl - Klbr (1)

where K|,,, is calculated from the external load, neg-
lecting crack—border interaction, and Ky, is caused by
the compressive bridging stresses.

In the first part of the paper an appropriate bridging
stress relation is established. Then the general influ-
ence of the bridging stresses on the R-curve behaviour
of macro-cracks is studied for stable and subcritical
crack growth. In three examples the parameters of the
bridging law are determined from experimental liter-
ature results. After describing the general R-curve
behaviour of small cracks, a procedure is presented
that allows one to determine the bridging parameters
of natural cracks.

2. The bridging stress relation

The bridging stresses are dependent on the crack
opening displacement 3. Mai and Lawn [13] pro-
posed a relation

(ool — (3/80)]"  for /8, <1
Cbrerin = ) for /8¢ > 1

m=01,2... (2
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that is shown in Fig. 1. It is assumed that the charac-
teristic displacement for which the bridging stresses
vanish is proportional to the grain size. On account of
grain size distribution, the characteristic displacement
is also distributed.

It is assumed that the distribution density of §, is
a I'-distribution, as represented in Fig. 2.

1 [ 38 < 3o )
= — |+ Jex - (3)
800 <5> P\ S
Other I'-distributions are considered elsewhere [14].

The macroscopically averaged bridging stresses result
from

f (o)

cbr,aver = J\ csbr; grain f(SO)dSO (4)
0

For the I'-distribution (Equation 3) the following
averaged bridging stress relations result:
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Figure I Stress-displacement relations for a single-grain
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Figure 2 Distribution of the characteristic COD value 8, (abscissa
normalized: 8¢/940).

with
9@z = (1 + zyexp(—2) m =90 (51
g(z) = exp(—2) m=1 (52
g(z) = (I—2exp(—2) + z?Ei(z) m = 2 (5.3)
where Ei is the exponential integral defined by
=9} e*t
Ei(x) = j Tdt x>0 (5.4)

available in most computer libraries. The bridging
laws are shown in Fig. 3. These relations ensure a con-
tinuously decreasing effect of crack—border interaction
with decreasing displacement. Especially the case
m =1 1is used in the subsequent calculations.

3. Calculation of the bridging stress
intensity factor

A test specimen with a crack may be loaded by an
external load, which leads to a stress distribution
Capp1(X) at the location of the crack in the uncracked
component. The geometrical quantities of such
a crack are explained in Fig. 4. In the case where the
material exhibits a bridging zone with crack—surface
interactions, the total stress is the sum of the applied
stress and the bridging stress o, i.c.

Gtotal(x) = Gappl(x) - cYbr(-x) (6)

[t is convenient to use a minus sign in Equation 6 and
positive values of oy,. These stresses are responsible
for the stress intensity factor, which is given in the
representation of the weight function [15]

J:h(g,%/)dx)dx )

The total displacements of the crack surface can be
easily derived by the relation existing between crack
surface displacements, weight function and stress
intensity factor as proposed by Rice [16]:

H 0
K, 0a
with H = E for plane stress and H = E/(1 — v?) for
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Figure 3 Influence of the parameter m in Equation 2 on the aver-
aged bridging stress.
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Figure 4 Specimen with a crack under bending load.

plane strain. Integration of this formula yields the
crack—surface displacements & caused by the stress
c [17]

1 a a
d(x) = —f J hid', x)h{a', x')o(x")da’ dx’
H 0 Jmax(x,x")

©)

where x is the coordinate with the displacement com-
puted and x’ is the location where the stress o acts.
Equation 9 can also be derived from the procedure of
Paris [18] based on Castigliano’s theorem. A detailed
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description is given in the appendix of Tada’s hand-
book [19].

The stress intensity factors describing the R-curve
behaviour can be obtained in the following way:

1. The total crack surface displacements according
to the total stress (Equation 6) become

5 = L f ’ J ’ h(d, x)h(@, x')(Cappt — Or)

H 0 Jmax(x,x")
da'dx = 8009~ " (Cb:/ o) (10)

where g~ ! is the inverse of the function defined by
Equation 5. The solution of the integral Equation 10
provides the distribution of the bridging stresses as
a function of the stresses applied.

2. The related bridging stress intensity factor.

Ky, results from Equation 7 as

“ X a
Ky = Jvoh(E’I/_V>Ubr(x)dx

3. The applied stress intensity factor Ky,p, sim-
ilarly becomes

“ (x a
KI appl — J‘() h <;a I’_V> csappl(x) dx (72)

4. Finally, the crack tip stress intensity factor
Kp is given by Equation 1.

(1.1)

The solution of Equation 10 can be determined by
several methods. The simplest one is the iterative
approximation. In the first step, the applied stress
Ouppi 18 introduced in the integrand of Equation 10,
yielding the crack surface displacement field 6,5,
A first approximation of the bridging stresses is ob-
tained by introducing J,,, in the bridging stress law.
The bridging stresses obtained are then introduced
once more in Equation 10 and the procedure is re-
peated as long as the bridging displacements are
constant.

The evaluation of Equation 10 using successive ap-
proximation needs much computer time. In order to
reduce the computation effort, special strategies are
available [14]. The simplest one is to use tabulated
solutions of the previous procedure in normalized
form. These data can easily be interpolated by cubic
splines.

For numerical calculations the weight function for
a single-edge notched specimen [20] is recommended:

h B 2 1/2 . 1
L <@> [l — (x/a)]"*[1 ~ (@/W)*R

J(- o) s (5)]
(11)

with the coefficients A4,, given in Table L

4. General results

In Fig. 5 results of calculations for a crack with an
initial relative crack size (e.g. a saw notch) of
ag/W =05 under bending are represented as

744

TABLE 1 Coefficients for Equation 11

v
0 1 2 3 4
0 0.4980 2.4463 0.0700 1.3187 — 3.067
1 0.54165 — 5.0806 243447 — 327208 18.1214
2 —0.19277 2.55863 — 12.6415 19.763 — 10.9860
3 —
2L
=
>
1 —
0 4

/
KI appl

Figure 5 Stress intensity factor Ky,;, as a function of applied stress
intensity factor Kj,,, in a normalized representation (behding,
890 =1, ag/W =0.5). a/W =(——) 050, (——-) 0.525, (————)
0.55, (——) 0.60, (---) 0.65, (—-—) 0.70, -+~~~ ) 0.75.

Kip versus. K, for several actual crack lengths
a/W. In this figure, the stress intensity factors are
normalized with respect to the maximum bridging
stress o and the specimens width W as

K

Ki = —10
o W72

(12)
and the parameter 8o, of the bridging stress rela-
tion by

H

bo = ——=3 13
o = 5y doo (13)

4.1. Constant-load tests

The representation of the stress intensity factor (Fig. 5)
allows one to describe crack extension tests under
different loading conditions. In Fig. 5 crack propaga-
tion in a constant-load test under subcritical crack
growth conditions is illustrated by the solid line for
6/, = 0.4 and 85, = 1.0.

The curve starts at point A corresponding to
Kiappt = Kiip = ¢ a*Y. With increasing crack
length, first the crack-tip stress intensity factor
Ki4p decreases and after reaching a minimum value,
K, increases monotonically. The applied stress
intensity factor Ky, is plotted in Fig. 6 versus the
crack extension Aa/W. The Kj,p,p—Aa/W curve in-
creases monotonically. This is self-evident since for
constant stress the stress intensity factor

Klappl Gappl al/Z Y(a/ W) (14)

reflects only the increase in the product a'/?Y with



crack extension, and this quantity is not a material
property, but depends only on the geometric data
a, a/W. The bridging stress intensity factor developing
with increasing crack length is traced in Fig. 7 as
a solid line. A comparison between the two R-curve
representations  Ki,, =f(Aa) and K, = f(Ag)
shows the superiority of Kj,, = f(Aa) since this repres-
entation reflects the material behaviour.
Constant-load tests for several initial stress intens-
ity factors Ky; are shown in Fig. 8. The influence of the
initial stress intensity factor on the R-curve can be
seen from Fig. 9. It is evident that the R-curve is more
pronounced for low values of applied stress.

4.2. Crack extension with constant crack-tip
stress intensity factor

In this section tests with constant stress intensity fac-
tor Kj,;, are considered. Such tests are difficult to
perform. One possibility would be to perform tests
with constant crack growth rate. Results are presented
here to show the differences from the tests with con-
stant stress. Crack extension with constant stress
intensity factor Kj;, (e.g. stable crack propagation
with Ky, = Ko = const.) is described by the dashed
horizontal line in Fig. 5. The related Ky,,,—Aa curve is
also shown in Fig. 6. At the beginning of crack exten-
sion, the curve is approximately square-root shaped in
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Figure 6 Applied stress intensity factor for crack extension under
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Figure 7 Bridging stress intensity factor as a function of crack
extension: (——) constant-load test, (—-—-) test with constant K.
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Figure 8 Development of the crack-tip stress intensity factor
K\,p in constant-load tests.

1.5 ~
5 Normalized
X
- stress
-
o
§ 1.0 +
> 0.4
a
oy
2
£ 05
o 0.6
o
= 0.8
I 1 i 1 1 ]
0 0.05 0.10 0.15 0.20 0.25 0.30

Crack extension, (a-a)/W

Figure 9 Development of the R-curve stress intensity factor K, in
constant load tests (normalized stress = /G,).

accordance with the literature {(e.g. [21]). Also for this
type of crack propagation, the R-curve representation
K. = f(Aa) s introduced in Fig. 7 (dashed line). For
small crack extension this curve hardly deviates from
the curve obtained under constant load conditions.
Significant differences in the shapes of the R-curves
become obvious for large crack extensions. R-curves
for crack propagation at Ky, = const. are shown in
Fig. 10 for different values of K;;,. It becomes obvious
that the R-curve depends on the level of Ky,

The bridging stress intensity factor Ky, is plotted in
Fig. 11 against Aa/W. In this representation the de-
pendency on Kj,;, becomes more obvious. It can be
seen from Figs 6,7,9,10 and 11 that the bridging
stress intensity factor Ky, shows a square-root shaped
increase for small crack extensions. This can easily be
understood. If the crack extension is small compared
with the initial notch depth Aa =a — gy <€ g, the
displacements 8a1, Oapp1 and &y, are also small within
the whole range gy < x < a. In this case 8 < §yo and
consequently oy, >~ G.

In this special case the application of the weight
function yields the bridging stress intensity factor

8q \1/2 \1/2 1
KIbr = ("ﬂ?) 0'0|:<1 — f:*;) + ZAuVEV—H
(a/ W)* ap | ¢/
X[l—(a/W)J”(l_?) ] (1
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Figure 10 R-curves for crack extension with constant crack-tip
stress intensity factors Kjp.
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Figure 11 Development of the bridging stress intensity factor
Ky, for crack extension tests with constant crack-tip stress intensity
factor Kjyp,.

Since for Aa — 0 in Equation 15 only the first term in
brackets contributes to the bridging stress intensity
factor, we have

8Aa\'?
Kipe = 0'0<T) (16)

and the square-root shaped increase in the bridging
stress intensity factor with crack extension becomes
obvious.

5. Determination of bridging stress
parameters from literature results

In this section, the weight-function based procedure

described above is applied to determine the para-

meters (g, 8g0) of the bridging stress law from ex-

perimental data available in the literature. For the

evaluation Equation 5.2 is assumed to be valid.

5.1. Stable crack propagation

First stable crack propagation under increasing load
is considered. Fig. 12 shows a set of R-curves for
99.8% Al,O5 with a mean grain size of ~16 um [4].
The original data expressed by energy release rates
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Figure 12 R-curves for coarse-grained Al,O; based on meas-
urements of Steinbrech and Schmenkel [4]. Different symbols de-
note different specimens.

were converted by

GE \'2
Klappl = <1 N V2> (17)

(E = 360 GPa, v = 0.22) into applied stress intensity
factors Kj,p,. The crack-tip stress intensity factor
K4, in the stable crack growth test is given by the
initial value of Kj,,p at Aa = 0. Due to the approxim-
ately square-root-shaped R-curves for Aa — 0, this
value can hardly be measured in a stable crack growth
test. Therefore, the value of K, has also to be con-
sidered to be an unknown parameter.

In order to determine the unknown parameters o,
800, K10, @ least-squares procedure was applied for the
R-curve with ao/ W = 0.4:

(i) The procedure starts with an arbitrarily chosen
set of the parameters o, 8¢¢, Kjo. For the given value
Ko the corresponding applied stress ©,,, is given by

“w° Ix a
Ko = JO h(a:w)cappldx (18)

In the case of a bending bar the applied stress becomes

~ X
Gappl = 0appl<1 _— 2[/_V> (19)

where &,,,, is the outer fibre bending stress.

(ii) Solution of the set of Equations 10, 7.1, 7.2 and
1 provides the stress intensity factors Kj,pp1, Kby and
Kiip- In this way, one obtains the calculated R-curve

= fl(a/W, oo, d00)

for the actual parameter set.

Klappl,calc

(iii) The least-squares routine compares the cal-
culated R-curve with the experimental R-curve and
determines the sum of squares according to

SZ = Z(Klappl,calc - Kvlappl,exp)2 (20)

The routine changes the parameter set (Go, 890, Kio)
until a minimum of §? is reached. So the best para-
meter set in least-squares terms is determined. For
practical use the authors applied the Harwell routine
VAOQ2A.



As a result of this procedure it was found for m = 1
o = 05 Kigp = 069 K, = 24 MPam'?
and with W ="7mm

o, = 42MPa Sop = 0.41 um

The fitting curve corresponding to these parameters is
plotted in Fig. 13 as a solid line. Using this parameter
set the R-curves for ag/W =02 and 0.6 were also
calculated. The results are plotted in Fig. 13 as dashed
lines. The agreement is excellent for aq = 0.6, and also
for ayo/W = 0.2 the experimental results can be well
described, but for large crack extension deviations are
evident.

Since the bridging stress parameters are known, the
crack surface profile results from Equation 10. Fig. 14
shows the crack profile for the crack with aq/ W = 0.4
after a crack propagation of Aa/W =0,0.1,0.2 and
0.3. The crack surface profiles exhibit square-root-
shaped near-tip displacements which are directly pro-
portional to the crack-tip stress intensity factor Kjyp,.
The corresponding distribution of the bridging stres-
ses Op,(x) is shown in Fig. 15.

It should be mentioned in this context that the
procedure presented, based on the fracture-mechan-
ical weight function, does not require any additional
assumption to be made on a special crack opening

(MPa m'/2)

KIappI

n i 1 [ 1 i L i 1
0 0.2 0.4 0.6 0.8 1.0
Normalized crack length, ao/W

Figure 13 R-curves of Fig. 12 compared with curves calculated with
the parameters from the least-squares procedure: (——) fitted
R-curve, (——-) predicted R-curves. Different symbols denote differ-
ent specimens.
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Figure 14 Crack surface profiles according to Fig. 13; ao/ W = 0.4.
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Figure 15 Bridging stresses for cracks with different crack exten-
sions (lines as in Fig. 14; ao/ W = 0.4).

profile, as for example applied in the J-integral evalu-
ation performed by Steinbrech et al. [22].

5.2. Subcritical crack extension

A second possibility of determining the parameters of
Equation 5.2 is the evaluation of subcritical crack
growth measurements. Results of crack growth
measurements for alumina from specimens with
macrocracks are reported in [9]. Two commercially
available materials were investigated:

(i) Material I: 99.6% Al,O;,K;. = 3.3 MPam!/?,
average grain size 20 pm.

(ii) Material II:  99.6% Al,O; (HIPped),
K, = 4 MPam'/?; this material shows an in-
homogeneous grain size distribution with a mean
grain size of 3.2 um and maximum grains of ~25 pm
size.

The results reported [9] were obtained with single-
edge notched specimens, 3.5mm x 4.5 mm x 50 mm in
size, loaded in three-point bending with a constant
load. The notch in the centre of the specimen was
prepared with a diamond saw. The notch depth was
2.245 4+ 0.01 mm, the notch width 50 pm.

In Figs 16 and 17 da/dt-K|,,,,; curves are plotted for
different stresses applied. Two types of da/dt-K;-
curves can be seen. First, a decrease of the crack
growth rate with increasing crack length and therefore
increasing Ki,,, is obvious. The crack growth rate
drops by several orders of magnitude within a small
amount of crack extension. After a large range with
a nearly constant crack growth rate the crack growth
rate increases until final fracture. For the lowest K, for
both materials crack arrest was observed.

Whilst in the case of stable crack extension the
value Kjy;, is known, the crack-tip stress intensity
factor changes during crack propagation in constant-
load tests. In order to determine the parameters o,
doo from such tests, a least-squares procedure is again
applied. The treatment is outlined for the special case
where the subcritical crack growth is described by
a power-law relation

da

= — = AK?
dt !

A*(Ki /K )"  (21)
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Figure 16 v—K, curves for specimens with macrocracks from static
bending tests (material I) [9]; K;; = 2.72/2.96/3.06/2.82/3.20/3.21/
3.25 MPa m'/?,
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Figure 17 v—K| curves for specimens with macrocracks from static
bending tests (material IT) [97; K;; = 2.93/3.25/3.32/3.85 MPam'/2.

(i) The procedure starts with an estimated initial
combination of parameters (oq, 890, A%, n). For any
data point (Kj,pp1, @/ W) the crack tip stress intensity
factor K, is calculated, and using Equation 21 the
subcritical crack growth rate v, is calculated.

(ii) The calculated and the measured crack growth
rates Uy, are compared and the sum of squares is
determined by -

S2 = Z(lOg Ucale — 10g Umeas)z (22)

(iif) Further treatment by the least-squares proced-
ure is similar to that for stable crack propagation
apart from the fact that now a set of four parameters
are determined.

The result of calculation is
= 46.4 MPa, 8y, = 0.95 pm,
— 297, n=25

Material I: o,
log A* =
748

Material II: 6, = 88.8 MPa, 8,y = 0.224 pm,

logA* = —0.7,n=25

In earlier investigations the subcritical crack growth
behaviour of natural cracks was determined for mater-
ial T [23] and material TI [24] by application of
a modified lifetime method [25] ignoring possible
R-curve effects. The result was n = 38 for material
I and n = 20 for material II. The discrepancies in the
n values for the macro-cracks may be caused either
by fundamental differences in the subcritical crack
growth behaviour of natural, small cracks compared
with artifical macro-cracks and/or by intolerable in-
fluences of the R-curve on the evaluation procedure
for the natural cracks.

To check the accuracy of the parameters deter-
mined (6o, 8¢9, A%, n), the least-squares sums S? —
normalized to the minimum value SZ;, — are plotted in
Fig. 18 for a number of power-law exponents n. The
dashed line represents 8y, and the dash-dotted curve
shows o).

In Fig. 19 the v-Kj,,, curves — calculated with:the
bridging parameters of material IT — are plotted for

2.0
1.5 A
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€10 4 ~100 <
“&)E - e ———— o ° s
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) * ©
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---------- &g
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Power-law exponent, n

Figure 18 Least-squares results for fixed exponents n: (——)
$?/S%, (left-hand scale), (——-) 8po (left-hand scale), (—-—)
Gy (right-hand scale); material II.
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Figure 19 v-K,,p, curves for material II calculated with the fitted
parameter set (dashed straight line: v = f(Kj,)).



several initial stress intensity factors Ky;. The dashed
straight line describes the power-law relation
v = AKfJ,,. Finally, Fig. 20 shows the R-curve cal-
culated with the fitted material data. A comparison of
the -0 relations obtained for the three materials is
given in Fig. 21.

6. R-curve for natural cracks

In this section it is assumed that the bridging stresses
determined with macro-cracks can be applied also to
natural cracks. It is of special interest how the bridg-
ing stresses dffect the strength and the lifetimes of
specimens with a natural flaw population. The natural
cracks are modelled by semicircular surface cracks
ignoring special surface influences, i.e. by a half of an
embedded circular crack. As illustrated in Fig. 22, the
initial crack size is a, and the actual crack size is a.
The displacements due to the radial stress distribution
a(r) are described by [26]

41 —v?) [ 1
o(r) = nE aJp (2 — pH)i~
* podp
- o (x* — pH? dx p = r/a  (23)
3_
S I
£ _——
o ok i
>
’]_
0 0.2 04 06
a-a, (mm)

Figure 20 R-curves for material II calculated with the fitted para-
meter set and K;; = 4 MPam!/2 Lines as in Fig. 19; K;; (MPa
mi?) = (——) 3.25, (—-—) 3.32, (-~ ) 3.85.

1001

Bridging stress (MPa)

1
0o 05 1.0 1.5
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Figure 21 Bridging stress relations for the three materials investig-
ated: (-—-) material I, (——) material IL, (---) Al,O; (from [4]).

Figure 22 Semicircular crack.

where x is a dimensionless integration variable. The
related stress intensity factor is given by

2 ¢ ro(r)dr
K, = (na)uzj (az _’,2)1/2 (24)

6.1. Analytical solutions for special cases
The crack surface displacement under homogeneously
distributed stress ¢ = G,p, = const. is

41 — v?)

Bappt = nE

cyappl(az - rZ)l/Z (25)
and the stress intensity factor

1/2
Klappl Oappla ! (26)

7[1/2

The maximum displacement (occurring at » = 0) is

41 — v 201 — v?)
6appl,r=0 = T T_I<lapplal/2

(27)

For a crack with a = 100 um and E = 360 GPa we
obtain a maximum displacement when K}, reaches
K,o. With a value of K;q = 3 MPa m!/? — typical of
coarse-grained Al, O3 — one obtains

Gappl a =

Buppt,max = 0.09 pm

If we compare this limit value with the characteristic
displacements 84, and if we keep in mind that

(i) the displacements decrease from the crack origin
to the crack-tip, and

(i) the bridging stresses will reduce the crack
opening,

we can realize that the relevant crack surface dis-
placements are small compared with the values of 8.
This will at least hold for material I. Consequently,
one can approximate

O =~ Op

For material II, wheie &y is of the same order of
magnitude as the displacements in the bridging zone,
this approximation will lead to an upper-limit case for
the R-curve of the natural cracks. With this simplifica-
tion made, the bridging stress intensity factor obtained
from Equation 24 is

2
—5 0ola® — aj)'? (28)

Klbr (na)l/z

The crack surface displacement due to the bridging
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stresses is given by [27]

4(1 — v¥ao,

Ouppr = OF - 29)
with
dofa xdx J‘l
0* = —_— e
Jr/a [XZ - (r/a)Z]l/Z agla
x — [x* — (ap/a)*]"?
[ = (r/a)Z]”Z dx forr < a,
(30a)

dx forr > ag

. f x — [x* = (ao/af]'"
ajr [X2 - (r/a)2]1/2
(30b)

or in an analytically integrated form

= [T T T2
a a a

— E[sin" ! (ay/a), (r/ao)]} for r < aq

(30c)

T Tl

— E[sin"(r/a, ag/r)] — |:1 - r—é] {K(ao/r)

and

5% =

— F[sin ' (r/a), (ao/r)]}> for r > ay (30d)

where F and E are the first and second elliptical
integrals and K and F are the corresponding complete
elliptical integrals. In this context, it should be men-

tioned that the solution given by Sneddon [26],

namely

8* = [1 — (/a1 [1 — (ao/a)’]"* (31)

is wrong [27].

Fig. 23 shows the displacements caused by the
bridging stresses in a normalized representation. In
Fig. 24 the R-curve according to Equation 28 is plot-
ted for the natural cracks. In a strength test only

o
|

___________

o o o
S [+)] o
1

Normalized displacement
o
N

0 0.5 1.0

Figure 23 Displacements due to bridging stresses (normalized dis-
placement = — 8*) for (——) ap/a = 0.5 and (——-) ag/a = 0.
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Figure 24 R-curves for the natural cracks: (——-) material I, (——)
material II, (@) locations of failure; ¢, = 0.1 mm.

a small part of this curve will be covered. The points of
instability where the strength is reached (material I:
220 MPa, material II: 370 MPa) are marked by solid
circles.

6.2. Influence of bridging stresses on
strength

The critical stress o, (the strength) results from the

two conditions

0K,
Kyp = Klappl — Kin(Aa) <ﬁ>c:mm=%
dKIbr
— d(Aa) (32)

Fig. 25 represents the strength influenced by the bridg-
ing stresses as a function of the strength when no
bridging effect occurs. The range of experimentally
determined strength data according to Figs 26 and 27
is introduced in Fig. 25. The influence of the R-curve
on the strength of specimens with natural flaw popula-
tion is small, which can be concluded from Fig. 25.

6.3. Influence of bridging stresses on
lifetimes

The lifetime ¢; in a static test performed with the stress

o results in

soda 1 [ d
= = = 12 . (33)
ag U A dg (GYa 12— Klbr)n

0

tf=

where a, is the initial value of the crack length a and
a, is the crack length at failure. Under subcritical
crack growth conditions the crack size at failure a.
can be derived from a failure condition analogous to
Equation 32 for the applied stress o.

In Fig. 28 the influence of the bridging stresses on
the lifetimes is illustrated. The comparison between
the lifetimes in the presence of bridging stresses and
lifetimes in the absence of bridging stresses shows
longer lifetimes as a consequence of the bridging stres-
ses. Also a lower slope of the curve with bridging
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Figure 25 Influence of bridging stresses on the inert strength.
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Figure 26 Four-point bending strength of material I. [23].

stresses is evident [28]. This will lead to an increased
exponent of the power law ; oc 67" The slightly dif-
ferent strength values can also be seen in Fig. 28.

6.4. A procedure to determine bridgirig
stresses for natural cracks

It cannot be excluded that bridging behaviour of natu-
ral cracks may deviate from the behaviour of macro-
cracks. Therefore, it is desirable to determine the
bridging stress relation for natural cracks. In the case
where the lifetimes are affected by the bridging stres-
ses, it should — in principle — be possible to determine
these stresses from lifetime measurements. A possible
procedure — based on strength and lifetime measure-
ments in static tests — is described below:

1. At the beginning of the procedure a least-squares
routine provides an arbitrary set of parameters A,
n for a power-law description of subcritical crack

1} e}
O
O
o]
O
Or (o]
—— O
E o]
1 O
= o}
= -1t o)
c
= (o]
S
(]
-2t O
O
2.4 2.5 2.6

Log (strength)

Figure 27 Four-point bending strength of material II. [28].
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Figure 28 Influence of bridging stresses on the lifetime in static tests
(material II): (——) without and (——) with bridging stresses.

growth and o, 840, m for a three-parametric bridging
relation (e.g. Equations 5.1-5.3).

2. For each measured strength value o, the related
initial crack size a,, is determined from the failure
conditions in strength tests

1/2 1/2

Kiappt = Oy Ya? = Kio + Ky, la. - o Y =2/m /
<aKIappl> dI<Ibr
X _— = —
aaCV G = const d aCV

3. Lifetime computations:

(34)

{(a) Calculation of the final crack length a in a con-
stant load test using Equation 32 for the stress occur-
ring in the tests.

(b) In the next step the integral equation (resulting
from combination of Equations 5 and 23) has to be
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solved. Especially for the case m = 1 it yields
G, 41 —v%) (! 1
+ a
Go TEdqo p (x? — p?)'©?
*  podp
— = 0 (35
XU (xZ—pZ)“Z]dx )

The solution of this integral equation can be deter-
mined by successive approximation. The result is the
radial distribution of the bridging stresses over the
crack.

(c) Equation 24 then provides the bridging stress
intensity factor Kyy,.

(d) Now, all information is available to evaluate the
lifetime relation

1 [ee da
o = L 36
fcalculated A Jvao (G Ya”z - Klbr)” ( )

log

4. The calculated lifetimes are then compared with
the measured ones corresponding to the same failure
probability and the sum of squares is determined as

SZ = Z(log tf calculated log tfmeasured)z (37)

5. In the next step the parameter set is changed
systematically and the procedure starts again from
point 1 with these new parameters.

6. The procedure is repeated until the squares S?
reach a minimum.

The result is the best parameter set for description of
the v—K; curve and bridging relation.

Lifetime calculations according to the procedure
proposed above require the solution of Equation 35
for any crack growth increment da during evaluation
of Equation 36. In order to reduce the effort in deter-
mination of the bridging stress intensity factors, Equa-
tion 35 has been solved numerically [14] for several
values of the parameters 809, do/a, Kiip-

7. Conclusions
The R-curve effect caused by bridging stresses between
the crack surfaces has been analysed by application of
the fracture-mechanical weight function. Exponential
relations describing the macroscopically averaged
bridging stresses have been derived, and the related
R-curves have been calculated for conditions of sub-
critical and stable crack propagations. Crack growth
data from the literature were used to determine the
parameters of the bridging relation by a least-squares
procedure.

By use of the bridging stresses obtained in macro-
crack tests the influence on strength and lifetime could
also be studied for small natural cracks. Finally, a pro-
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cedure is proposed to determine the parameters of the
bridging stress relation from strength data and life-
times in static tests.
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