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Evaluation of R-curve effects in ceramics 
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In coarse-grained alumina the crack growth resistance increases with increasing crack extension 
due to crack-border interactions. The crack shielding stress intensity factor can be calculated 
from the relation between the bridging stresses and the crack opening displacement. The 
parameters of this relation can be obtained from experimental results on stable or subcritical 
crack extension. Finally the effect of the R-curve on the behaviour of components with small 
cracks is discussed. 

l .  I n t r o d u c t i o n  
Coarse-grained A1203 shows an R-curve behaviour 
which is characterized by an increase in crack growth 
resistance with increasing crack extension [1-10]. It 
was demonstrated experimentally [2, 3] that this effect 
is caused by crack-border interactions in the wake of 
the advancing crack. Recently, the crack-surface inter- 
actions have been detected in situ under the electron 
microscope [11, 12]. The bridging interactions were 
observed mainly on large grains. 

Crack shielding by crack-border interaction is not 
only effective in a test involving increasing load. Also 
under constant load with subcritical crack growth the 
crack-border interaction affects the observed crack 
growth rate. The stress intensity factor acting at the 
crack tip, Kl t ip  , c a n  be written as 

K l t i  p = K l a p p  1 - K l b  r (1) 

where K~appl is calculated from the external load, neg- 
lecting crack-border interaction, and K ] b  r is caused by 
the compressive bridging stresses. 

In the first part of the paper an appropriate bridging 
stress relation is established. Then the general influ- 
ence of the bridging stresses on the R-curve behaviour 
of macro-cracks is studied for stable and subcritical 
crack growth. In three examples the parameters of the 
bridging law are determined from experimental liter- 
ature results. After describing the general R-curve 
behaviour of small cracks, a procedure is presented 
that allows one to determine the bridging parameters 
of natural cracks. 

2. The br idging stress re lat ion 
The bridging stresses are dependent on the crack 
opening displacement 6. Mai and Lawn [13] pro- 
posed a relation 

{ Cyo[1- (8/8o)Jm for 8/8o <1}  
O'br'grain = 0 for 6/6o > 1 

m = 0 , 1 , 2  . . . .  (2) 

that is shown in Fig. 1. It is assumed that the charac- 
teristic displacement for which the bridging stresses 
vanish is proportional to the grain size. On account of 
grain size distribution, the characteristic displacement 
is also distributed. 

It is assumed that the distribution density of 6o is 
a F-distribution, as represented in Fig. 2. 

1( o) 
f(6o) = 6oo ~ exp ~ (3) 

Other F-distributions are considered elsewhere [14]. 
The macroscopically averaged bridging stresses result 
from 

f (Yb . . . . . .  = O'br; grain f ( 8 o )  d S o  (4) 

For the F-distribution (Equation 3) the following 
averaged bridging stress relations result: 

(Yb . . . . . .  = O - o g ( a / a o o  ) (5) 
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Figure 1 Stress-displacement relations for a single-grain 
~b,/~O =f(a/8o). 
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Figure 2 Distribution of the characteristic COD value ~0 (abscissa 
normalized: 80/~00). 
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Figure 3 Influence of the parameter m in Equation 2 on the aver- 
aged bridging stress. 

with 

g(z) = (1 + z ) e x p ( - - z )  m = 0 (5.1) 

g(z) = e x p ( - - z )  m = 1 (5.2) 

g(z) = ( 1 - z )  e x p ( - z )  + zZEi(z) m = 2 (5.3) 

where Ei is the exponential  integral defined by 

z i O O e  t 
El(x) J~ ~ - d t  x > 0 (5.4) 

available in most  computer  libraries. The bridging 
laws are shown in Fig. 3. These relations ensure a con- 
t inuously decreasing effect of c rack-borde r  interaction 
with decreasing displacement. Especially the case 
m = 1 is used in the subsequent calculations. 

3. Calculation of the bridging stress 
intensity factor 

A test specimen with a crack may  be loaded by an 
external load, which leads to a stress distribution 
O ' a p p l ( X  ) a t  the location of the crack in the uncracked 
component .  The geometrical quantities of such 
a crack are explained in Fig. 4. In the case where the 
material exhibits a bridging zone with crack-surface 
interactions, the total stress is the sum of the applied 
stress and the bridging stress CYbr, i.e. 

O,ot.j(x) = ~appI(X) Obr(X) (6) 

It is convenient  to use a minus sign in Equat ion  6 and 
positive values of ~br. These stresses are responsible 
for the stress intensity factor, which is given in the 
representat ion of the weight function [15] 

K, : ; ] h ( X , w ) C Y ( x ) d x  (7, 

The total displacements of the crack surface can be 
easily derived by the relation existing between crack 
surface displacements, weight function and stress 
intensity factor as proposed  by Rice [16]: 

H ~5 
h = - - - -  (8) 

KI ~a 

with H = E for plane stress and H = E/(1 - v 2) for 

- - ~  "I 

v 
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Figure 4 Specimen with a crack under bending load. 

plane strain. Integrat ion of this formula yields the 
crack-surface displacements 8 caused by the stress 
c~ [17] 

l f l r f l  ~ h(a',x)h(a',x')o(x')da'dx' 6(x) = ~ ax~x,x,~ 

(9) 

where x is the coordinate  with the displacement com- 
puted and x' is the location where the stress cy acts. 
Equat ion 9 can also be derived from the procedure of 
Paris [18] based on Castigliano's theorem. A detailed 
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description is given in the appendix of Tada's hand- 
book [19]. 

The stress intensity factors describing the R-curve 
behaviour can be obtained in the following way: 

1. The total crack surface displacements according 
to the total stress (Equation 6) become 

if'of' m h(a',x)h(a',x')(CYapp,-~br) 
= H ax(x,x') 

da'dx' ' = 8oog-l(CYb,/Cro) (10) 

where g-1 is the inverse of the function defined by 
Equation 5. The solution of the integral Equation 10 
provides the distribution of the bridging stresses as 
a function of the stresses applied. 

2. The related bridging stress intensity factor 
K l b  r results from Equation 7 as 

K.b~ = f f h (~ ,W)~rbr (X ,  dx (7.1, 

3. The applied stress intensity factor Klapp 1 sim- 
ilarly becomes 

Kiappl = f ]h (X ,w)Cy .pp , ( x )dx  (7.2) 

4. Finally, the crack tip stress intensity factor 
Kitip is given by Equation 1. 

The solution of Equation 10 can be determined by 
several methods. The simplest one is the iterative 
approximation. In the first step, the applied stress 
O'appl is introduced in the integrand of Equation 10, 
yielding the crack surface displacement field 5app,. 
A first approximation of the bridging stresses is ob- 
tained by introducing 8appl in the bridging stress law. 
The bridging stresses obtained are then introduced 
once more in Equation 10 and the procedure is re- 
peated as long as the bridging displacements are 
constant. 

The evaluation of Equation 10 using successive ap- 
proximation needs much computer time. In order to 
reduce the computation effort, special strategies are 
available [14]. The simplest one is to use tabulated 
solutions of the previous procedure in normalized 
form. These data can easily be interpolated by cubic 
splines. 

For numerical calculations the weight function for 
a single-edge notched specimen [20] is recommended: 

= ( 2 )  1/2 1 
hi \ ~ a a /  [1 - (x/a)] 1/2 [1 - (a/W)] 3/2 

•  + Z A v o ( 1 - - x / a ) v + l ( ~ )  ~'] 

(11) 

with the coefficients A~ given in Table I. 

4. General  results 
In Fig. 5 results of calculations for a crack with an 
initial relative crack size (e.g. a saw notch) of 
a o / W =  0.5 under bending are represented as 

744 

T A B L E  I Coefficients for Equation 11 

v p 

0 1 2 3 4 

0 0.4980 2.4463 0.0700 1.3187 - 3.067 
1 0.54165 -5 .0806 24.3447 -32.7208 18.1214 
2 -0 .19277 2.55863 - 12.6415 19.763 10.9860 
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Figure 5 Stress intensity factor K~tip as a function of applied stress 
intensity factor K'lapp I in a normalized representation (bending, 
~'oo = 1, ao/W= 0.5): a~ W = ( ) 0.50, ( - - - )  0.525, ( - -  
0.55, (----)  0.60, (...) 0.65, ( - - . - - )  0.70, ( . . . . . .  ) 0.75. 

K|tip v e r s u s .  Klapp ! for several actual crack lengths 
a/W. In this figure, the stress intensity factors are 
normalized with respect to the maximum bridging 
stress ~o and the specimens width W as 

KI 
K', - CYo W 1/2 (12) 

and the parameter 8oo of the bridging stress rela- 
tion by 

H 
8~o = - - 5 o o  (13) 

~o W 

4.1. Constant-load tests 
The representation of the stress intensity factor (Fig. 5) 
allows one to describe crack extension tests under 
different loading conditions. In Fig. 5 crack propaga- 
tion in a constant-load test under subcritical crack 
growth conditions is illustrated by the solid line for 
cy/Cyo = 0.4 and 8~o = 1.0. 

The curve starts at point A corresponding to 
Kx,ppl=Kmp=Cy al/2Y. With increasing crack 
length, first the crack-tip stress intensity factor 
Kmp decreases and after reaching a minimum value, 
Kh~p increases monotonically. The applied stress 
intensity factor Klapvl is plotted in Fig. 6 versus the 
crack extension Aa/W. The KiapprAa/W curve in- 
creases monotonically. This is self-evident since for 
constant stress the stress intensity factor 

Klappl = ~appl a l /2  Y(a/W) 04) 

reflects only the increase in the product a a/2 Y with 



crack extension, and this quantity is not a material 
property, but depends only on the geometric data 
a, a/W. The bridging stress intensity factor developing 
with increasing crack length is traced in Fig. 7 as 
a solid line. A comparison between the two R-curve 
r e p r e s e n t a t i o n s  K t b  r = f ( A a )  and Klapp ! = f ( A a )  
shows the superiority of K~b, = f (Aa)  since this repres- 
entation reflects the material behaviour. 

Constant-load tests for several initial stress intens- 
ity factors K~ are shown in Fig. 8. The influence of the 
initial stress intensity factor on the R-curve can be 
seen from Fig. 9. It is evident that the R-curve is more 
pronounced for low values of applied stress. 

4.2. Crack  e x t e n s i o n  w i t h  c o n s t a n t  c r a c k - t i p  
stress in tens i t y  fac to r  

In this section tests with constant stress intensity fac- 
tor Kid p are considered. Such tests are difficult to 
perform. One possibility would be to perform tests 
with constant crack growth rate. Results are presented 
here to show the differences from the tests with con- 
stant stress. Crack extension with constant stress 
intensity factor Kh~p (e.g. stable crack propagat ion 
with Kltip = KlO = const.) is described by the dashed 
horizontal line in Fig. 5. The related K i a p p l - A a  c u r v e  is 
also shown in Fig. 6. At the beginning of crack exten- 
sion, the curve is approximately square-root shaped in 
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Figure 6 Applied stress intensity factor for crack extension under 
( ) constant load and (---)  constant stress intensity factor K~t~p; 
ao/W = 0.5. 
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Figure 7 Bridging stress intensity factor as a function of crack 
extension: ( ) constant-load test, (- ) test with constant Ki,lp. 
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Figure 8 Development of the crack-tip stress intensity l~tcto~ 
Kjtip in constant-toad tests. 
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Figure 9 Development of the R-curve stress intensity factor K ibr m 
constant load tests (normalized stress = cr/~o). 

accordance with the literature (e.g. [21]). Also for this 
type of crack propagation, the R-curve representation 
K l b  r = f ( A a )  is introduced in Fig. 7 (dashed line). For 
small crack extension this curve hardly deviates from 
the curve obtained under constant load conditions. 
Significant differences in the shapes of the R-curves 
become obvious for large crack extensions. R-curves 
for crack propagat ion a t  Klt lp = const, are shown in 
Fig. 10 for different values of Klt ip .  It becomes obvious 
that the R-curve depends on the level of K~tip. 

The bridging stress intensity factor K i b  r is plotted in 
Fig. 11 against Aa/W.  In this representation the de- 
pendency on K~,ip becomes more obvious. It can be 
seen from Figs 6, 7, 9, 10 and 11 that the bridging 
stress intensity factor K i b  r shows a square-root shaped 
increase for small crack extensions. This can easily be 
understood. If the crack extension is small compared 
with the initial notch depth Aa = a -  a0 < ao, the 
displacements 6tot,l, 5,ppl and 5br are also small within 
the whole range ao < x < a. In this case 6 < 5oo and 
consequently O ' b r  ~ ' ~  O -  0 .  

In this special case the application of the weight 
function yields the bridging stress intensity factor 

Kib  r = (3" 0 1 -- + ~ A~v 2v + 3 

• [1  - ( a / W ) ]  ~/~ 1 - (15 t  
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Figure 10 R-curves for crack extension with constant crack-tip 
stress intensity factors K~,v. 

Figure 12 R-curves for coarse-grained A1203 based on meas- 
urements of Steinbrech and Schmenkel [4]. Different symbols de- 
note different specimens. 
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Figure 11 Development of the bridging stress intensity factor 
K~ br for crack extension tests with constant crack-tip stress intensity 
factor Kltip. 

Since for Aa ~ 0 in Equation 15 only the first term in 
brackets contributes to the bridging stress intensity 
factor, we have 

Oo(  a) 
and the square-root shaped increase in the bridging 
stress intensity factor with crack extension becomes 
obvious. 

5. D e t e r m i n a t i o n  o f  b r i d g i n g  stress 
p a r a m e t e r s  f r o m  l i t e r a t u r e  resu l ts  

In this section, the weight-function based procedure 
described above is applied to determine the para- 
meters (Oo, 6oo) of the bridging stress law from ex- 
perimental data available in the literature. For  the 
evaluation Equation 5.2 is assumed to be valid. 

5.1. Stab le  c rack  propagation 
First stable crack propagation under increasing load 
is considered. Fig. 12 shows a set of R-curves for 
99.8% A1203 with a mean grain size of ~- 16 gm [4]. 
The original data expressed by energy release rates 

were converted by 

( G E )  1/2 
Klappl = 1 ~ -v 2 (17) 

(E = 360 GPa, v = 0.22) into applied stress intensity 
factors Klapp I. The crack-tip stress intensity factor 
Kitip in the stable crack growth test is given by the 
initial value of K~appl at Aa = 0. Due to the approxim- 
ately square-root-shaped R-curves for Aa ~ 0, this 
value can hardly be measured in a stable crack growth 
test. Therefore, the value of Kio has also to be con- 
sidered to be an unknown parameter. 

In order to determine the unknown parameters Oo, 
6oo, K,o, a least-squares procedure was applied for the 
R-curve with ao/W = 0.4: 

(i) The procedure starts with an arbitrarily chosen 
set of the parameters ~0, 6oo, K~o. For the given value 
K~o the corresponding applied stress Oappl is given by 

K1 o = h , O'apol dx (18) 

In the case of a bending bar the applied stress becomes 

(19) 

where ~a~pl is the outer fibre bending stress. 
(ii) Solution of the set of Equations 10, 7.1, 7.2 and 

1 provides the stress intensity factors Klappl,  K~br and 
Kjtip. In this way, one obtains the calculated R-curve 

Klappl,calc = f(a/W, C~o, 600) 
for the actual parameter set. 

(iii) The least-squares routine compares the cal- 
culated R-curve with the experimental R-curve and 
determines the sum of squares according to 

S 2 = '~, (K]appl, calc -- Klappl, exp) 2 (20) 

The routine changes the parameter set (~0, 6o0, Kin) 
until a minimum of S 2 is reached. So the best para- 
meter set in least-squares terms is determined. For 
practical use the authors applied the Harwell routine 
VA02A. 
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As a result of this procedure it was found for m = 1 

8~) 0 = 0.5 K~ltip = 0.69 K~o = 2 . 4 M P a m  1/2 

and with W =  7 mm 

Cyo = 4 2 M P a  8 o o = 0 . 4 1 p m  

The fitting curve corresponding to these parameters is 
plotted in Fig. 13 as a solid line. Using this parameter  
set the R-curves for a o / W =  0.2 and 0.6 were also 
calculated. The results are plotted in Fig. 13 as dashed 
lines. The agreement is excellent for ao = 0.6, and also 
for a o / W  = 0.2 the experimental results can be well 
described, but for large crack extension deviations are 
evident. 

Since the bridging stress parameters are known, the 
crack surface profile res,ults from Equation 10. Fig. 14 
shows the crack profile for the crack with a o / W  = 0.4 
after a crack propagat ion of A a / W - - 0 ,  0.1, 0.2 and 
0.3. The crack surface profiles exhibit square-root- 
shaped near-tip displacements which are directly pro- 
portional to the crack-tip stress intensity factor Kitip. 
The corresponding distribution of the bridging stres- 
ses O ' b r ( X  ) is shown in Fig. 15. 

It should be mentioned in this context that the 
procedure presented, based on the fracture-mechan- 
ical weight function, does not require any additional 
assumption to be made on a special crack opening 
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Figure 13 R-curves of Fig. 12 compared with curves calculated with 
the parameters from the least-squares procedure: ( ) fitted 
R-curve, ( ~ predicted R-curves. Different symbols denote differ- 
ent specimens. 
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profile, as for example applied in the J-integral evalu- 
ation performed by Steinbrech et al. [22]. 

5.2. Subcr i t i ca l  crack ex tens ion  
A second possibility of determining the parameters of 
Equation 5.2 is the evaluation of subcritical crack 
growth measurements. Results of crack growth 
measurements for alumina from specimens with 
macrocracks are reported in [9]. Two commercially 
available materials were investigated: 

(i) Material I: 99.6% A1203, KIr = 3 . 3 M P a m  1/2, 
average grain size 20 pm. 

(i"i) Material II: 99.6.% A1203 (HIPped), 
Kk = 4 M P a m l / 2 ;  this material shows an in- 
homogeneous grain size distribution with a mean 
grain size of 3.2 pm and maximum grains of ~- 25 pm 
size. 

The results reported [9] were obtained with single- 
edge notched specimens, 3.5 mm x 4.5 mm x 50 mm in 
size, loaded in three-point bending with a constant 
load. The notch in the centre of the specimen was 
prepared with a diamond saw. The notch depth was 
2.245 _+ 0.01 ram, the notch width 50 I.tm. 

In Figs 16 and 17 da/dt  Klapp I c u r v e s  are plotted for 
different stresse s applied. Two types of da /d t  K,-  
curves can be seen. First, a decrease of the crack 
growth rate with increasing crack length and therefore 
increasing K~appl is obvious. The crack growth rate 
drops by several orders of magnitude within a small 
amount  of crack extension. After a large range with 
a nearly constant crack growth rate the crack growth 
rate increases until final fracture. For the lowest Kn for 
both materials crack arrest was observed. 

Whilst in the case of stable crack extension the 
value Kltip is known, the crack-tip stress intensity 
factor changes during crack propagat ion in constant- 
load tests. In order to determine the parameters C~o, 
8oo from such tests, a least-squares procedure is again 
applied. The treatment is outlined for the special case 
where the subcritical crack growth is described by 
a power-law relation 

da 
v - dt - A K f  = A*(K, /K ,c )"  (21) 

747 



- 4  

-6 

E 

- B  

o ~ 
-~ -10 

o 
4, O 

. 

| o o 
o 0 

-12 I I I 
2 3 4 5 

KI appl ( MPo m 1/2) 
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Figure 17 v K l curves for specimens with macrocracks from static 
bending tests (material II) [9]; K ,  = 2.93/3.25/3.32/3.85 MPa m 1/2. 

(i) The procedure starts with an estimated initial 
combination of parameters (Cyo, 5oo, A*, n). For  any 
data point (Klappl ,  a~ W )  the crack tip stress intensity 
factor Klt ip  is calculated, and using Equation 21 the 
subcritical crack growth rate Vcalc is calculated. 

(ii) The calculated and the measured crack growth 
rates v . . . .  are compared and the sum of squares is 
determined by 

$2 : E (log voalr - log v . . . .  )2 (22) 

(iii) Further treatment by the least-squares proced- 
ure is similar to that for stable crack propagat ion 
apart  from the fact that now a set of four parameters 
are determined. 

The result of calculation is 

Material I: C~o = 46.4 MPa,  5oo = 0.95 gm, 

logA* = - 2 . 9 7 ,  n = 2 5  

7 4 8  

Material II: c~0 = 88.8 MPa, 50o = 0.224 gin, 

logA* - 0.7, n = 2 5  

In earlier investigations the subcritical crack growth 
behaviour of natural cracks was determined for mater- 
ial I [23] and material II  [24] by application of 
a modified lifetime method [25] ignoring possible 
R-curve effects. The result was n = 38 for material 
I and n = 20 for material II. The discrepancies in the 
n values for the macro-cracks may be caused either 
by fundamental differences in the subcritical crack 
growth behaviour of natural, small cracks compared 
with artifical macro-cracks and/or by intolerable in- 
fluences of the R-curve on the evaluation procedure 
for the natural cracks. 

To check the accuracy of the parameters deter- 
mined (C~o, 500, A*, n), the least-squares sums S 2 - 
normalized to the minimum value 2 Sm~n -- are plotted in 
Fig. 18 for a number of power-law exponents n. The 
dashed line represents 5~o and the dash-dotted curve 
shows (So. 

In Fig. 19 the v-K~ppl curves - calculated with the 
bridging parameters of material II  - are plotted for 
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Figure 19 v Klapp I curves for material II calculated with the fitted 
parameter set (dashed straight line: v =f(K. ip)) .  



several initial stress intensity factors K~. The dashed 
straight line describes the power-law relation 
v = AKft lp .  Finally, Fig. 20 shows the R-curve cal- 
culated with the fitted material data. A comparison of 
the ~-6 relations obtained for the three materials is 
given in Fig. 21. 

6. R - c u r v e  f o r  n a t u r a l  c racks  
In this section it is assumed that the bridging stresses 
determined with macro-cracks can be applied also to 
natural cracks. It is of special interest how the bridg- 
ing stresses affect the strength and the lifetimes of 
specimens with a natural flaw population. The natural 
cracks are modelled by semicircular surface cracks 
ignoring special surface influences, i.e. by a half of an 
embedded circular crack. As illustrated in Fig. 22, the 
initial crack size is ao and the actual crack size is a. 
The displacements due to the radial stress distribution 
cy(r) are described by [26] 

f l  1 8(r) - 4(1 -- v 2) a _ 92)172 
~E 0 ( x2 

x p2)l /2 ,dx p = r /a  (23) 

E 

13_  

I I I 

0.2 0.4 0.6 
a - a  o (mm) 

Figure 20 R-curves for material lI calculated with the fitted para- 
meter  set and Kii = 4 M P a  m U2. Lines as in Fig. 19; K~i (MPa  
m 1/2) = ( - - - )  3.25, ( - - - - - )  3.32, ( - - )  3.85. 
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O 0.5 1.0 1. 
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Figure 21 Bridging stress relations for the three materials investig- 
ated: ( -) material I, ( ) material II, (...) A1203 (from [4]). 

Figure 22 Semicircular crack. 

where x is a dimensionless integration variable. The 
related stress intensity factor is given by 

2 f'o roy(r) dr 
K , -  (r~a)~/2 (a2~r2772 (24) 

6.1. Analyt ica l  s o l u t i o n s  for spec ia l  c a s e s  
The crack surface displacement under homogeneously 
distributed stress cy = O,ppl = const, is 

4(1 - v 2) 
~appl - -  ~ T  O'appl(a2 - -  r2)1/2 (25)  

and the stress intensity factor 

2 
Klapp I - -  ~1/20"app l a l / 2  (26) 

The maximum displacement (occurring at r = 0) is 

~appl r=0 4(1 - -  V 2) 2(1 - 
' - -  ~ E  O'appl a - -  7cE v2) Klapplal/2 

(27) 

For a crack with a = 100 pm and E = 360GPa  we 
obtain a maximum displacement when K~,pp~ reaches 
K~0. With a value of Km = 3 MPa m 1/2 - typical of 
coarse-grained A1203 one obtains 

~appl . . . .  ~--- 0.09 lain 

If we compare this limit value with the characteristic 
displacements 8oo and if we keep in mind that 

(i) the displacements decrease from the crack origin 
to the crack-tip, and 

(ii) the bridging stresses will reduce the crack 
opening, 

we can realize that the relevant crack surface dis- 
placements are small compared with the values of 8oo. 
This will at least hold for material I. Consequently, 
one can approximate 

O'br '~ (3- 0 

For material II, where 800 is of the same order of 
magnitude as the displacements in the bridging zone, 
this approximation will lead to an upper-limit case for 
the R-curve of the natural cracks. With this simplifica- 
tion made, the bridging stress intensity factor obtained 
from Equation 24 is 

2 
g l b  r - -  (/ca)1/2 (Yo(a 2 - -  a 2 )  1/2 (28) 

The crack surface displacement due to the bridging 
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(29) 

with 

~* = f r a~  X dx f t 
/a [ x2  - -  (r/a)2] 1/2 + o/a 

x -- [x 2 - (ao/a)2] 1/2 
• dx [x 2 _ (r/a)2 ] ~/2 

fox [xZ -- (a~ dx ~, = x 
/, Ix 2 - (r/a)2]l/2 

or in an analytically integrated form 

stresses is given by [27] 

6,ppl = ~* 4(1 - v2)ac~0 

roE 

2,.5 

for r < ao 

(30a) 

for r > a0 

(30b) 

[ 1 - ( ~ ) 2 1 1 / 2 [ 1 - ( ~ ) 2 1 1 / 2 - - ~ { E ( r / a o )  

- E[sin -1 (ao/a), (r/ao)] I for r < ao 

(3Oc) 

,,--.,2.0 
.V. 

E 
o 1.5 

13_ 

,_1.0 

0.5 
I t 

I I 
0 0,2 0.4 

a - a  o (rnm) 

Figure 24 R-curves for the natural cracks: ( - - - )  material I, ( 
material II, (e) locations of failure; ao = 0.1 ram. 

a small part of this curve will be covered. The points of 
instability where the strength is reached (material I: 
220 MPa, material II: 370 MPa) are marked by solid 
circles. 

and 

= I1 --(ra)211/211 - - ( ~ ) 2 1 1 / 2 - - ; ( E ( a o / Y )  

- E[sin -~ (r/a, ao/r)] - 1 - V j  {K(ao/r) 

- F[sin 1 (r/a), ( ao / r ) ]} )  for r > a0 (30d) 

where F and E are the first and second elliptical 
integrals and K and E are the corresponding complete 
elliptical integrals. In this context, it should be men- 
tioned that the solution given by Sneddon [26], 
namely 

8* = [1 - -  (r/a)211/2[1 -- (ao/a)2] 1/2 (31) 

is wrong [27]. 
Fig. 23 shows the displacements caused by the 

bridging stresses in a normalized representation. In 
Fig. 24 the R-curve according to Equation 28 is plot- 
ted for the natural cracks. In a strength test only 

.,_ 1.0 
t -  

~ 0 . 8  
r 
I J  

~~ 6 ~  
"O  

~ 0 . 4  

E 0.2 
O 

z 

"--" . . . . . . . . . . . . . . . . . . . . . . . . .  . .  

x , . , . , .  

0 0.5 1.0 
r/a 

Figure 23 Displacements due to bridging stresses (normalized dis- 
p lacement=  - 6 * ) f o r (  ) a 0 / a = 0 . 5 a n d ( -  )ao/a=O. 

6.2. Influence of bridging stresses on 
strength 

The critical stress (yo (the strength) results from the 
two conditions 

(~  K] a p p l  

K]0 = Klappl - -  K l b r ( A a )  ~a / . . . . . .  t=~c 

d K] br 
- ( 3 2 )  

d(Aa) 

Fig. 25 represents the strength influenced by the bridg- 
ing stresses as a function of the strength when no 
bridging effect occurs. The range of experimentally 
determined strength data according to Figs 26 and 27 
is introduced in Fig. 25. The influence of the R-curve 
on the strength of specimens with natural flaw popula- 
tion is small, which can be concluded from Fig. 25. 

6.3. Influence of bridging stresses on 
lifetimes 

The lifetime tf in a static test performed with the stress 
o results in 

fioda l f io  da tr = - (33) 
o v A o ( Oya l f i  -- Klbr)n 

where ao is the initial value of the crack length a and 
ac is the crack length at failure. Under subcritical 
crack growth conditions the crack size at failure ac 
can be derived from a failure condition analogous to 
Equation 32 for the applied stress ~. 

In Fig. 28 the influence of the bridging stresses on 
the lifetimes is illustrated. The comparison between 
the lifetimes in the presence of bridging stresses and 
lifetimes in the absence of bridging stresses shows 
longer lifetimes as a consequence of the bridging stres- 
ses. Also a lower slope of the curve with bridging 
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Figure 25 Influence of bridging stresses on the inert strength. 
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Figure 26 Four-point bending strength of material I. 1-23]. 

stresses is evident [28]. This will lead to an increased 
exponent  of the power law tf oc er-". The slightly dif- 
ferent strength values can also be seen in Fig. 28. 

6.4. A p rocedure  to de te rm ine  b r i dg idg  
stresses for  natura l  cracks 

It cannot  be excluded that bridging behaviour  of natu- 
ral cracks may  deviate f rom the behaviour  of macro-  
cracks. Therefore, it is desirable to determine the 
bridging stress relation for natural  cracks. In the case 
where the lifetimes are affected by the bridging stres- 
ses, it should - in principle - be possible to determine 
these stresses from lifetime measurements.  A possible 
procedure - based on strength and lifetime measure- 
ments in static tests - is described below: 

1. At the beginning of the procedure  a least-squares 
routine provides an arbi t rary set of parameters  A, 
n for a power-law description of subcritical crack 
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Figure 27 Four-point bending strength of material II. [28]. 
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Figure 28 Influence of bridging stresses on the lifetime in static tests 
(material II): ( - - )  without and (-----/with bridging stresses. 

growth and ao,  6oo, m for a three-parametric  bridging 
relation (e.g. Equat ions 5.1-5.3). 

2. For  each measured strength value acv the related 
initial crack size aov is determined from the failure 
condit ions in strength tests 

Klappl  = (Ycv yalc/2 = K i o  + Klbr  I . . . . . . .  Y ~ 2 / g l / 2  

X ( O K I a p p l )  _ d K I b r  

\ ~ / . . . . . .  t d acv 

(34) 

3. Lifetime computat ions:  

(a) Calculat ion of the final crack length ao in a con- 
stant load test using Equat ion  32 for the stress occur- 
ring in the tests. 

(b) In the next step the integral equat ion (resulting 
from combinat ion  of Equat ions  5 and 23) has to be 
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solved. Especially for the case m = 1 it yields 

O'br 4(1 - -  V 2) ( 1  1 
log - -  + a J p  _ p2)1/2 CYo nE6oo (X 2 

[1o 1 x ( x 2 _ p 2 ) l / 2  dx 0 (35) 

The solution of this integral equation can be deter- 
mined by successive approximation. The result is the 
radial distribution of the bridging stresses over the 
crack. 

(c) Equation 24 then provides the bridging stress 
intensity factor K l b  r. 

(d) Now, all information is available to evaluate the 
lifetime relation 

1 f l  ~ da (36) tfcalculated = A o ( cy Yal/2 - -  Klbr)n 

4. The calculated lifetimes are then compared with 
the measured ones corresponding to the same failure 
probability and the sum of squares is determined as 

S 2 = }-',(log if calculate d - -  log tf . . . . . . .  d) 2 (37) 

5. In the next step the parameter set is changed 
systematically and the procedure starts again from 
point 1 with these new parameters. 

6. The procedure is repeated until the squares S 2 
reach a minimum. 

The result is the best parameter set for description of 
the v-Ki curve and bridging relation. 

Lifetime calculations according to the procedure 
proposed above require the solution of Equation 35 
for any crack growth increment da during evaluation 
of Equation 36. In order to reduce the effort in deter- 
mination of the bridging stress intensity factors, Equa- 
tion 35 has been solved numerically [14] for several 
values of the parameters ~00, ao/a, Kxtip. 

7. Conclusions 
The R-curve effect Caused by bridging stresses between 
the crack surfaces has been analysed by application of 
the fracture-mechanical weight function. Exponential 
relations describing the macroscopically averaged 
bridging stresses have been derived, and the related 
R:curves have been calculated for conditions of sub- 
critical and stable crack propagations. Crack growth 
data from the literature were used to determine the 
parameters of the bridging relation by a least-squares 
procedure. 

By use of the bridging stresses obtained in macro- 
crack tests the influence on strength and lifetime could 
also be studied for small natural cracks. Finally, a pro- 

cedure is proposed to determine the parameters of the 
bridging stress relation from strength data and life- 
times in static tests. 
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